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Using the standard weak-field approximation, we analyse the steady-state electro-
kinetic flow about an uncharged ideally polarizable spherical particle for the case of
a Debye thickness which is large compared with the particle size. The dimensionless
problem is governed by two parameters: β , the applied field magnitude (normalized
with the thermal scale), and λ, the Debye thickness (normalized with particle size).
The double limit β � 1 and λ� 1 is singular, and the resolution of the flow field
requires the use of inner–outer asymptotic expansions in the spirit of Proudman &
Pearson (J. Fluid Mech., vol. 2, 1957, p. 237). Two asymptotic limits are identified:
the ‘moderately thick’ limit βλ� 1, in which the outer domain is characterized by
the Debye thickness, and the ‘super-thick’ limit βλ� 1, in which the outer domain
represents the emergence of electro-migration in the leading-order ionic-transport
process. The singularity is stronger in the comparable two-dimensional flow about
a circular cylinder, where a switchback mechanism in the moderately thick limit
modifies the familiar O(β2) leading-order flow to O(β2 ln λ).

1. Introduction
Electrokinetic flows about polarizable particles have been studied in the Soviet

and post-Soviet colloidal literature since the pioneering work of Levich (1962). In
contrast to ‘classical’ electrokinetic phenomena, wherein the fixed surface charge
density is a physicochemical property of the particle–electrolyte system (Saville 1977;
Anderson 1989), flows about ideally polarizable (perfectly conducting) surfaces are
characterized by mobile surface charge which is induced by the externally applied
electric field (Simonov & Dukhin 1973; Shilov & Simonova 1981; Gamayunov,
Murtsovkin & Dukhin 1986; Murtsovkin 1996). This phenomenon was re-discovered
by Bazant & Squires (2004) who coined the term ‘induced-charge’ flows to describe
the entire host of effects associated with field-induced charge redistributions about
polarizable surfaces, as in AC electro-osmosis (Ramos et al. 1998; Ajdari 2000;
Brown, Smith & Rennie 2000; González et al. 2000; Green et al. 2000; Wang et al.
2006) and electrohydrodynamic particle–electrode interactions (Böhmer 1996; Trau,
Saville & Aksay 1996, 1997; Solomentsev, Böhmer & Anderson 1997; Sides 2001,
2003; Ristenpart, Aksay & Saville 2004, 2007a , b). Similar mechanisms also occur
near ion-selective membranes and granules (Rubinstein & Shtilman 1979; Dukhin
1991; Rubinstein & Zaltzman 2001; Ben & Chang 2002; Ben, Demekhin & Chang
2004; Zaltzman & Rubinstein 2007).
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Current research directions in this field include microfluidic applications
(Bazant & Squires 2004; Zhao & Bau 2007a; Harnett et al. 2008), particle–wall
(Zhao & Bau 2007b, Yariv 2009) and particle–particle (Saintillan 2008) interactions,
non-spherical particles (Yariv 2005; Squires & Bazant 2006; Saintillan, Darve &
Shaqfeh 2006a; Yossifon, Frankel & Miloh 2007; Yariv 2008b) and suspension
dynamics (Saintillan et al. 2006a; Saintillan, Shaqfeh & Darve 2006b; Rose et al.
2007). As explained by Squires & Bazant (2004), induced-charge flows occur over
all polarizable surfaces, the case of a perfectly conducting surface representing the
extreme limit of an ideally polarizable material (see Yossifon et al. 2007). Accordingly,
the induced-charge phenomenon is also pertinent in a variety of electrokinetic flows
about dielectric surfaces (Thamida & Chang 2002; Yossifon, Frankel & Miloh 2006),
as well as biological molecules and cells (Dukhin 1986).

Aside from several exceptions (Zhao & Bau 2007b), the common practice in
induced-charge-flow analysis is to employ the thin-Debye-layer model, whereby
the electrokinetic processes within the Debye layer are lumped into two bulk-
scale boundary conditions (Keh & Anderson 1985; Anderson 1989). With the
recent advancement in device miniaturization it is not uncommon however to
encounter microfluidic systems in which the pertinent linear dimension is comparable
to the Debye thickness. In this general class of problems, the familiar concepts
associated with the thin-Debye-layer limit (zeta potential, slip velocity and Debye-
layer capacitance) lose their concrete meaning. Accordingly, understanding this class
cannot be achieved by extending the thin-layer model; rather, one needs to confront
the full set of electrokinetic equations (Saville 1977).

Induced-charge flows at arbitrary Debye thickness were theoretically investigated
using a weak-field approximation (Murtsovkin 1996; Simonova, Shilov & Shramko
2001). A systematic asymptotic analysis of that problem which also provided closed-
form expressions for the attendant flow field was carried out by Yariv & Miloh
(2008). This work was soon followed by generalizations to non-spherical particles and
non-uniformly applied fields Miloh (2008).

Of special interest is the extreme case of Debye thickness which is large compared
with the particle linear dimension, pertinent in nano-fluidics (Stein, Kruithof &
Dekker 2004; Eijkel & Berg 2005; Schoch, Han & Renaud 2008) and in distilled low-
salt-concentration solutions, where the Debye thickness can approach the micron scale
(see (2.1)). At first sight, it may appear that the thick-layer limit could be obtained by
properly degenerating the results of Yariv & Miloh (2008). However, as will become
evident in subsequent analysis, this limit is a singular one, and requires inner–outer
asymptotic expansions in the spirit of Proudman & Pearson (1957). Resolving this
limit constitutes the aim of the present paper.

We focus upon the simplest configuration that exhibits the essential features of
induced-charge flow: a perfectly conducting spherical particle which is exposed to
a uniform electric current in an unbounded electrolyte solution. In dimensionless
notation, this problem is characterized by two dimensionless parameters: β , the applied
field magnitude (normalized with the thermal scale), and λ, the Debye thickness
(normalized with the particle size). Following Saville (1977), we focus upon the
double limit β � 1 and λ� 1. Note that the weak-field limit β � 1 in Saville’s
analysis represents a small perturbation to an already existing Debye cloud; in the
present problem, on the other hand, the Debye-cloud charge scales as β .

The double limit is manipulated using regular-perturbation methods, in which the
particle dimension constitutes a natural length scale. The weak-field limit relaxes the
strong coupling of the governing equations, and leading-order solutions for the ionic



Electrokinetic flows about polarizable nano-particles 343

concentration and the electric potential are readily calculated. The ensuing velocity
field, however, fails to decay at large distances from the particle. This failure implies
that the asymptotic solution is non-uniform, indicating that a second length scale
affects the problem (Van Dyke 1964). A systematic asymptotic solution therefore
requires the use of inner–outer expansions (Hinch 1991), in which the inner scale
describes processes occurring at particle neighbourhood. The choice of the outer
scale reflects two possible asymptotic limits: the ‘moderately thick’ limit 1 � λ� 1/β ,
and the ‘super-thick’ limit λ� 1/β . Both limits are investigated, but a full asymptotic
solution is found only for the first.

We also analyse a comparable two-dimensional configuration – an infinite cylinder
in an unbounded electrolyte solution. Cylindrical geometries have already been
analysed in the context of ‘fixed-charge’ electrokinetics about non-polarizable surfaces
(Keh & Chen 1993; Keh, Horng & Kuo 2006). These geometries are of special
importance in induced-charge electrokinetic processes in microfluidic systems, where
fixed bodies (e.g. nanowires) are abundant (Bazant & Squires 2004). This is indeed
explicit in previous analyses – both theoretical (Squires & Bazant 2004; Zhao & Bau
2007b) and experimental (Levitan et al. 2005) – of two-dimensional configurations.
The singularity in the two-dimensional problem is stronger than that in the comparable
three-dimensional case, and a switchback mechanism actually reshuffles the asymptotic
expansions in the inner region.

The paper is organized as follows: In the next section we formulate the governing
equations. The asymptotic analysis is outlined in § 3. The moderately thick limit is
analysed in § 4, and the super-thick limit in § 5. The comparable two-dimensional
problem of an infinite cylinder is discussed in § 6. Concluding remarks are given in
§ 7.

2. Problem formulation
An uncharged spherical particle (radius a) is suspended in a symmetric z–z

electrolyte solution (viscosity μ, permittivity ε). The solution is neutral, whereby
the cations and anions number density is equal, say n∞. The particle is a perfect
conductor, and is chemically inert: the solution ions cannot discharge on its surface.

At time zero, a uniform electric field E∞ is externally applied at large distances
from the particle. After a short transient (Squires & Bazant 2004; Yossifon, Frankel
& Miloh to appear), the system reaches a steady state in which the solution becomes
charged in the near-particle region (the Debye layer). Our interest lies in the steady-
state electrokinetic processes – and especially the flow field – which is established
throughout the fluid domain.

We employ a dimensionless formulation. Length variables are normalized by a; the
ionic concentrations n± are obtained by normalizing with n∞; the electric potential is
naturally normalized with the thermal voltage ϕT = kT /ze (kT being the Boltzmann
factor and e the elementary charge) – about 25 mV for a univalent solution. The
Poisson equation already possesses a natural length scale, namely the Debye thickness.
Thus, the dimensionless Debye thickness λ, defined by

λ2 =
εkT

2z2e2a2n∞
, (2.1)

readily emerges as a governing parameter. Another parameter,

β =
aE∞

ϕT

, (2.2)
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Figure 1. (a) The particle geometry and dimensionless coordinates. Also shown is a qualitative
schematic illustration of the inner and outer asymptotic regions. (b) Streamlines (ψ̄ = const.)
at the meridian plane for λ= 5, drawn using (4.26). Also shown are the front (θ = θ0) and back
(θ = π − θ0) cones that separate the inflow and outflow regions.

reflects the applied field magnitude. The balance between viscous friction and
Coulomb body forces yields the velocity scale

U =
zean∞ϕT

μ
. (2.3)

The pressure is accordingly normalized with μU /a. In several references (Saville
1977; Yariv & Miloh 2008) the velocity is normalized by the electrokinetic speed
εϕ2

T /μa. The present scale differs from it by a 2λ2 factor and is more suitable for the
limit λ� 1.

The normalization procedure results in a dimensionless formulation for the ionic
densities n±, the electric potential ϕ, the velocity field v and the pressure p.
In prescribing the boundary conditions, we employ a spherical coordinate system
(r, θ, � ), r = 0 coinciding with the particle centre and θ = 0 along the applied field
(see figure 1a). We also define the symmetry axis x, whose positive direction coincides
with θ =0. The equatorial plain is chosen as x = 0.

As is common in the literature we assume that both the cations and anions possess
the same ionic diffusivity D. While the central asymptotic results in the present
investigation are independent of this assumption, we retain it in favour of brevity.
The ionic concentrations n± are therefore governed by the conservation equations

∇ · (∇n± ± n±∇ϕ) =
α

2λ2
v · ∇n± (2.4)

wherein the dimensionless group α = εϕ2
T /μD is independent of particle size; in view

of particle impermeability to mass (see (2.14)), they also satisfy the no-flux conditions

∂n±

∂r
± n±

∂ϕ

∂r
= 0 at r = 1; (2.5)

moreover, both concentrations must approach the equilibrium density at large
distances from the particle

n± → 1, as r → ∞. (2.6)
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The electric potential ϕ is governed by Poisson’s equation,

∇2ϕ = − q

2λ2
, (2.7)

wherein

q = n+ − n− (2.8)

is the volumetric charge density (normalized with zen∞); it must also acquire a
uniform value on the conducting particle surface, whence with no loss of generality
we also require

ϕ = 0 at r = 1; (2.9)

at large distance, moreover, it must asymptotically approach the appropriate
expression for the uniformly applied field

ϕ ∼ −βr cos θ as r → ∞. (2.10)

The velocity field is incompressible

∇ · v = 0 (2.11)

and it satisfies the Stokes equation, accounting for the Coulomb body force,

∇2v − ∇p = q∇ϕ, (2.12)

By forming its curl, the latter can be formulated in terms of the fluid vorticity,
ω = ∇ × v

∇2ω = ∇q × ∇ϕ; (2.13)

in view of the particle impermeability to mass and the no-slip condition, the velocity
vanishes on the particle boundary

v = 0 at r = 1, (2.14)

and it also decays at large distances from the particle

v → 0 as r → ∞. (2.15)

Lastly, one needs to impose a consistency condition (Yariv 2005, 2008a; Yariv
& Miloh 2008). Since the particle was uncharged to begin with, and given its
impermeability to ions, its total charge remains zero (though it may possess a non-
uniform charge density). Using the boundary condition representation of Gauss law,
this integral constraint appears as ∮

r=1

dA
∂ϕ

∂r
= 0. (2.16)

Equations (2.4)–(2.16) uniquely determine the steady-state transport process.
Instead of the ionic concentrations n±, it is sometimes useful to employ the charge

density q and the total ionic concentration

c = n+ + n−; (2.17)

thus, addition of (2.4) yields the ‘salt balance’ equation,

∇ · (∇c + q∇ϕ) =
α

2λ2
v · ∇c, (2.18)

whereas subtraction of (2.4) yields the charge balance equation,

∇ · (∇q + c∇ϕ) =
α

2λ2
v · ∇q. (2.19)
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Similarly, the boundary conditions (2.5) may be written equivalently as

∂c

∂r
+ q

∂ϕ

∂r
= 0,

∂q

∂r
+ c

∂ϕ

∂r
= 0 at r = 1, (2.20)

and the far-field conditions (2.6) appear as

c → 2, q → 0 as r → ∞. (2.21)

The solenoidal and axisymmetric attributes of v allow it to be derived from a
stream function ψ (Happel & Brenner 1965)

v =
1

r sin θ
ê� × ∇ψ; (2.22)

substitution into (2.13) yields

E4ψ =

(
∂q

∂r

∂ϕ

∂θ
− ∂q

∂θ

∂ϕ

∂r

)
sin θ, (2.23)

wherein

E2 =
∂2

∂r2
+

sin θ

r2

∂

∂θ

(
1

sin θ

∂

∂θ

)
. (2.24)

In addition to this equation, ψ also satisfies the impermeability and no-slip conditions
on the particle boundary

ψ =
∂ψ

∂r
= 0 at r = 1 (2.25)

and the far-field condition

ψ/r2 → 0 as r → ∞, (2.26)

reflecting the velocity attenuation at large distances.
The preceding equations are coupled and highly nonlinear. Yet, several symmetries

associated with reflection about the equatorial plane x = 0 may be extracted without
the need to actually solve them: it is evident from the structure of the differential
equations and boundary conditions that ϕ, q and the axial velocity component are odd
functions of x, while c, p and the transverse velocity component are even functions
of x. It is convenient to represent this symmetry in spherical coordinates, where v

adopts the form êru + êθv. Here, u and v are the radial and circumferential velocity
components, and {êr , êθ , ê� } are the unit vectors in spherical coordinates. It is readily
verified that c, u and p are invariant under the transformation θ → π − θ , while ϕ, q

and v change their sign. Specifically, that implies that

n−(θ) = n+(π − θ). (2.27)

Note that these symmetry properties hold only for initially uncharged particles (see
(2.16)).

For typical values appropriate to aqueous solutions (ε ≈ 6 × 10−10 kg m s−2 V−2,
μ ≈ 10−6 kgm−1 s−1) and characteristic values of ionic diffusivities (10−9 m2 s−1) α is
about 0.5. We therefore proceed assuming α to be an O(1) parameter. The other
parameters appearing in the governing equations are λ and β . Even for strongly
applied fields, β is usually small in view of typical dimensions of colloidal particles
(Saville 1977; Yariv & Miloh 2008); this tendency is only intensified when considering
nano-particles, and we accordingly assume β � 1. In this paper, we consider the double
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limit

λ � 1, β � 1. (2.28)

3. Asymptotic analysis
Since the applied field is the driver of the electrokinetic transport, we postulate the

following expansions

ϕ ∼ βϕ(0) + · · · , (3.1)

q ∼ βq (0) + · · · . (3.2)

The momentum balance is animated by O(β2) body forces, whence we propose the
expansion

v ∼ β2v(1) + · · · , (3.3)

together with comparable expansions for p, ω and ψ . The forcing term in the salt
balance (2.18) is also O(β2); in view of (2.21) we anticipate the expansion

c ∼ 2 + β2c(1) + · · · . (3.4)

Poisson’s equation implies that ϕ(0) is harmonic

∇2ϕ(0) = 0. (3.5)

Applying the boundary condition (2.9) and the far-field condition (2.10) yields

ϕ(0) = −
(

r − 1

r2

)
cos θ +

A

r
− A. (3.6)

The integral constraint (2.16) then yields A = 0. The leading O(β) balance of (2.19)
implies that q (0) is also harmonic. The boundary conditions at r =1 and r → ∞ then
yield the dipole solution

q (0) = −3
cos θ

r2
. (3.7)

When focusing upon the electrokinetic flow, no need arises for calculating the
salt distribution c(1). In view of (3.2) and (3.4), the inner expansions for the ionic
concentrations are

n± ∼ 1 + βn
(0)
± + · · · (3.8)

in which

n
(0)
+ = −n(0)

− = 1
2
q (0). (3.9)

Consider now the flow problem. The leading-order velocity field is solenoidal

∇ · v(1) = 0 (3.10)

and satisfies the O(β2) momentum balance:

∇2v(1) − ∇p(1) = q (0)∇ϕ(0). (3.11)

In addition, it vanishes at r =1 and attenuates at large distances away from the
particle.

Even before attempting to solve these equations we readily observe a problem: the
Coulomb body forces in (3.11) decay at an r−2 rate, therefore resulting in a velocity
field which does not attenuate at infinity. This implies that the double limit (2.28)
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is singular. This singularity is indeed apparent from the solution of the flow field.
Substitution of (3.6) and (3.7) into (2.23) yields

E4ψ (1) =
18

r2
C3(cos θ), (3.12)

where

C3(η) =
η(1 − η2)

2
(3.13)

is the Gegenbauer function of order 3 and degree −1/2 (Happel & Brenner 1965).
Seeking a solution of the form

ψ (1)(r, θ) = f (1)(r)C3(cos θ) (3.14)

we find that f (1) satisfies the ordinary differential equation

L f (1) =
18

r2
, (3.15)

where

L =
d4

dr4
− 12

r2

d2

dr2
+

24

r3

d

dr
. (3.16)

This equation possesses the particular integral

f
(1)
P =

3r2

4
(3.17a)

and the homogeneous solution

f
(1)
H = g5r

5 + g3r
3 + g0 +

g−2

r2
. (3.17b)

Note that the particular integral (3.17a) does not satisfy (2.26); moreover, this failure
cannot be remedied by any of the terms of the homogeneous solution.

Clearly, the mathematical reason for the above impasse is the slow 1/r2-type decay
of the charge density. This decay rate, and the consequent inability to satisfy the
velocity-decay condition, reflects a non-uniformity of the asymptotic solution. This
non-uniformity is triggered by the existence of another length scale in addition to
the particle dimension a. The present analysis is only valid within an r = O(1) inner
region, and must be supplemented by a comparable analysis at an appropriate ‘outer’
region quantified by a large scale. In the present problem there are actually two such
scales, λ and 1/β . The outer scaling is determined by the smallest of these two. Two
cases are therefore pertinent (see figure 1a): the ‘moderately thick’ limit 1 � λ� 1/β ,
and the ‘super-thick’ limit 1 � 1/β � λ.

In view of the scale disparity, the velocity field v(1) is no longer required to decay
at large r . Thus, we do not apply (2.26) to ψ (1); rather, the four integration constants
appearing in (3.17) are to be determined from the boundary condition (2.25) and
from matching with the outer velocity field, yet to be determined.

4. The moderately thick limit
We begin with the moderately thick limit, 1 � λ� 1/β . At O(λ) distances the

Debye layer affects the electric potential: the approximation (3.5), giving rise to the
slow charge attenuation rate, breaks down and a transition occurs to an exponential
charge attenuation.
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To analyse the Debye-scale processes, we define the outer radial variable R,
appropriate for r = O(λ), by normalization with the Debye thickness

r = λR. (4.1)

The outer region is therefore described by R = O(1).
The outer fields are denoted by capital symbols. With ∇R = λ∇ being the outer

gradient operator, Poisson’s equation appears as

∇2
RΦ = −Q

2
; (4.2)

the salt and charge balances are

∇R · (∇RC + Q∇RΦ) =
α

2λ
V · ∇RC, (4.3)

∇R · (∇RQ + C∇RΦ) =
α

2λ
V · ∇RQ, (4.4)

and the flow equations adopt the form

∇R · V = 0, ∇2
RV − λ∇RP = λQ∇RΦ. (4.5)

The fields are subjected to the far-field limits

C → 2, Q → 0, V → 0 as R → ∞. (4.6)

and to the requirement of a uniform field at infinity

Φ ∼ −βλR cos θ as R → ∞. (4.7)

Additionally, the outer variables must match the comparable inner fields.
The governing equations suggest the following asymptotic expansions:

Φ ∼ −βλR cos θ + δ(β, λ)Φ (0) + · · · , Q ∼ δ(β, λ)Q(0) + · · · , (4.8)

where the pre-factor δ( � βλ) remains to be determined. The momentum balance then
suggests that V is O(βλ2δ) and the salt balance suggests the expansion

C ∼ 2 + βλδ(β, λ)C(0) + · · · . (4.9)

In the limit δ � βλ� 1 we then find that the leading-order charge density is
not affected by electro-migration with the leading-order electric field, nor by fluid
convection:

∇2
RQ(0) + 2∇2

RΦ (0) = 0. (4.10)

Substitution into the above of the O(δ) Poisson equation

∇2
RΦ (0) = −Q(0)

2
(4.11)

yields the following Helmholtz equation:

∇2
RQ(0) = Q(0). (4.12)

The general solution that decays at large R is given by the eigenfunction expansion

Q(0) = R−1/2

∞∑
n=0

AnKn+1/2(R)Pn(cos θ). (4.13)

The need to match (3.7) implies, however, that A1 is the only coefficient that does
not vanish. Using the small-argument expansion for the modified Bessel functions



350 M. A. Hamed and E. Yariv

(Abramowitz & Stegun 1965)

Kn+1/2(z) ∼ 1

2
Γ

(
n +

1

2

) ( z

2

)−n−1/2

as z → 0, (4.14)

and matching with the inner charge field (3.7) yields A1 = − 3(2/π)1/2 and

δ =
β

λ2
. (4.15)

The latter is indeed smaller then βλ, thus confirming the consistency of our asymptotic
scheme. The velocity is therefore O(β2)

V ∼ β2V (1) + · · · . (4.16)

As in the inner region, we define a stream function (cf. (2.22))

V =
1

R sin θ
ê� × ∇RΨ. (4.17)

Clearly, Ψ possesses the asymptotic expansion

Ψ ∼ β2Ψ (1) + · · · . (4.18)

Substitution of the leading-order electric field and charge density into the outer
momentum balance, followed by a derivation similar to the one performed in the
inner region, yields (cf. (3.12)) the differential equation (wherein the operator E2

R is
given by (2.24) with r replaced by R)

E4
RΨ (1) = 6e−R

(
1 +

3

R
+

3

R2

)
C3(cos θ) (4.19)

and the far-field condition

R → ∞ : Ψ (1)/R2 → 0. (4.20)

We seek a solution of the form

Ψ (1) = F (1)(R)C3(cos θ). (4.21)

The function F (1)(R) is governed by the ordinary differential equation

LRF (1) = 6e−R

(
1 +

3

R
+

3

R2

)
, (4.22)

in which LR is given by (3.16) with r replaced by R. The homogeneous solution of
this equation has a functional form similar to (3.17b); the far-field decay condition
(4.20) implies that both the R5 and R3 powers must be rejected. Using the variation-
of-parameters method, we then obtain

F (1)(R) = 6e−R

(
1 +

3

R
+

3

R2

)
+

G−2

R2
+ G0, (4.23)

where G−2 and G0 are constants of integration which are to be determined via
matching with the inner solution (3.17).

In view of the stretching (4.1), the requirement of velocity matching implies that
the large-r expansion of ψ must match the small-R expansion of λ2Ψ . Expanding
(4.23) for small R yields (this requires five terms in the Taylor approximation of e−R)

F (1) ∼ 18 + G−2

R2
+ G0 − 3 +

3

4
R2 + O(R3). (4.24)
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Inspection of (3.17) shows that the comparable inner field f (0) is at least O(r2) at
large r , and could even behave as r3 or r5 depending upon the coefficients g3 and g5 in
the homogeneous solution (3.17b). Thus, matching is possible only if G−2 = − 18 and
G0 = 3; since F (0) behaves like R2 at small R, g3 and g5 must vanish. It is then readily
verified that asymptotic matching indeed fulfilled to leading order. The remaining
coefficients in (3.17b) are found using boundary condition (2.25), which readily yields
g−2 = 3/4 and g0 = − 3/2.

The flow field in the entire fluid domain is conveniently represented by a uniformly
valid approximation ψ̄ . Adding (3.14) and (4.21) and subtracting the overlapping
parts yield the leading-order approximation

ψ̄(r, θ; λ) = β2f̄ (r; λ)C3(cos θ) + · · · , (4.25)

in which

f̄ (r; λ) = −3

2
+

3

4r2
+ λ2

[
6e−r/λ

(
1 +

3λ

r
+

3λ2

r2

)
− 18λ2

r2
+ 3

]
. (4.26)

The corresponding streamlines in the meridian plain are shown in figure 1(b).
It is illuminating to compare the leading-order flow in the moderately thick limit

with that corresponding to moderate λ values at weak fields (Yariv & Miloh 2008).
While the moderately thick limit introduces a singular two-scale radial dependence,
the latitudinal dependence upon θ is similar. Indeed, both the inner and outer flow
profiles (3.14) and (4.21) represent a quadrupolar pump wherein fluid is pumped from
the particle ‘front’ (0 < θ < θ0) and ‘back’ (θ0 <θ < π) cones, with cos θ0 = 1/3, and
ejected alongside the equatorial plain θ0 <θ < π − θ0. This pump can be quantified by
the net volumetric flux F (normalized with a2U ) which enters into the back cone at
large distances from the particle. Naively, one would be tempted to follow Yariv &
Miloh (2008) and obtain F using the far-field behaviour of ψ

F = −2π lim
r→∞

ψ(r, π − θ0). (4.27)

This limit, however, does not exist. Indeed, the non-uniformity of the inner solution
necessitates use of the uniform approximation (4.26) to capture the flux at large
distances, whereby (4.27) is replaced by

F = −2π lim
r→∞

ψ̄(r, π − θ0). (4.28)

Substitution of (4.26) yields

F ∼ 2πβ2λ2

√
3

. (4.29)

This expression agrees with the large-λ limit of the general flux expression obtained
by Yariv & Miloh (2008). (Recall the different velocity scale in that paper.)

5. The super-thick limit
We now consider the limit 1 � 1/β � λ. Here, the non-uniformity of the inner

solution stems from a different mechanism. Recall that the 1/r2 decay of n
(0)
± reflects

the dominance of the O(β) diffusive term in (2.4) over the O(β2) electro-migration
term. Consideration of the decay rate in these terms reveals, however, that this
dominance break down at sufficiently large distances. Indeed, the O(β/r4) diffusive
term decays faster than the O(β2/r3) electro-migration term; regardless of how small
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β is, at distances O(1/β) these terms become comparable. This type of non-uniformity
is mostly associated with inertia effects in low-Reynolds-number flows (Proudman
& Pearson 1957), and is also familiar from low-Péclet-number problems of forced
convection (Acrivos & Taylor 1962) and thermocapillarity (Subramanian 1981).

Thus, the appropriate scale for the super-thick limit is 1/β . To analyse the processes
occurring at r = O(1/β) we define the radial variable ρ as (cf. (4.1))

r = β−1ρ. (5.1)

As in the moderately thick layer analysis, The outer fields are denoted by capital
symbols. With ∇ρ =β−1∇ being the outer gradient operator, Poisson’s equation
appears as (cf. (4.2))

∇2
ρΦ = − 1

2β2λ2
Q. (5.2)

In the present limit, it is preferable to employ the ionic conservation equations, rather
than those governing salt and charge. Transformation of (2.4) to outer variables yields

∇ρ · (∇ρN± ± N±∇ρΦ) =
α

2βλ2
V · ∇ρN±; (5.3)

finally, the flow equations adopt the form (cf. (4.5))

∇ρ · V = 0, β∇2
ρ V − ∇ρP = Q∇ρΦ. (5.4)

The pertinent variables are subject to the far-field limits (4.6) and to the requirement
of a uniform field at infinity (cf. (4.7))

Φ ∼ −ρ cos θ as ρ → ∞. (5.5)

Additionally, they must match the comparable inner variables.
The governing equations suggest the following asymptotic expansions (cf. (4.8)):

Φ ∼ −ρ cos θ + χ(β, λ)Φ (0) + · · · , N± ∼ 1 + χ(β, λ)N (0)
± + · · · , (5.6)

where the pre-factor χ( � 1) remains to be determined. We therefore anticipate that
(cf. (4.8) and (4.9))

Q ∼ χ(β, λ)Q(0) + · · · , C ∼ 2 + χ(β, λ)C(0) + · · · . (5.7)

The momentum balance then suggests that V is O(χ/β). It is then readily verified
that the ratio of convection to diffusion–migration is of order χ/β2λ2. Since χ � 1 so
must be this factor. Accordingly, convection does not affect the leading-order ionic
balances

∇2
ρN

(0)
± = ±êx · ∇ρN

(0)
± . (5.8)

The cation concentration N
(0)
+ satisfies a standard diffusion–convection equation. This

equation was solved by Acrivos & Taylor (1962) in the context of forced convection

N
(0)
+ = exp

(
ρ cos θ

2

)
ρ−1/2

∞∑
n=0

SnKn+1/2

(ρ

2

)
Pn(cos θ); (5.9)

matching with the inner solution (see (3.8) and (3.9)) shows that S1 is the only
non-vanishing coefficient. Using the small-argument expansion (4.14) yields

S1 = − 3

4π1/2
(5.10)
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and

χ = β3. (5.11)

Note that χ � 1, a posteriori confirming the asymptotic procedure. Using (2.27), we
finally find

Q(0) = − 3

2π1/2
cosh

(
ρ cos θ

2

)
ρ−1/2K3/2

(ρ

2

)
cos θ. (5.12)

When considering the outer flow problem, we employ the expansions

V ∼ β2V (1) + · · · , P ∼ β3P (1) + · · · . (5.13)

The leading-order momentum balance is

∇2
ρ V (1) − ∇ρP

(1) = −êxQ
(0). (5.14)

Defining a stream function in the form (cf. (4.17))

V =
1

ρ sin θ
ê� × ∇ρΨ, (5.15)

and using the expansion

Ψ ∼ β2Ψ (1) + · · · (5.16)

yields the partial differential equation (cf. (4.19))

E4
ρΨ

(1) =
3

4
e−ρ/2

(
1 +

6

ρ
+

12

ρ2

)
cosh

(
ρ cos θ

2

)
C3(cos θ) (5.17)

wherein the operator E2
ρ is given by (2.24) with r replaced by ρ. Unfortunately, we

were unable to solve that equation. Without such a solution it is impossible to perform
the requisite matching.

Regardless of the explicit form of the velocity field, it is clear that the charge
distribution (5.12) (implicit in the forcing term of (5.17)) prohibits a quadrupolar
pump structure, of the form existing in the moderately thick limit.

6. The flow about a perfectly conducting cylinder
We now consider another idealized geometry – an infinite cylinder of a circular

cross-section (radius a). The applied field is directed perpendicular to the cylinder axis,
and all the electrokinetic transport processes are two-dimensional. The problem is
naturally handled via polar coordinates (r, θ), r and θ being the radial and azimuthal
coordinates, with θ = 0 in the direction of the applied field. These two coordinates
possess a different geometric meaning than the coordinates r and θ appearing in
the three-dimensional problem; nevertheless, the governing equations (2.4)–(2.21),
developed originally for a spherical particle, remain valid.

To analyse the two-dimensional flow we employ the Helmholtz stream function
(cf. (2.22)),

v = êz × ∇ψ, (6.1)

where êz = êr × êθ is a unit vector in the direction of the cylinder axis. Substitution of
the relation

∇2ω = êz∇4ψ (6.2)
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into (2.13) yields the inhomogeneous bi-harmonic equation (cf. (3.12))

∇4ψ =
∂q

∂r

∂ϕ

r∂θ
− ∂q

r∂θ

∂ϕ

∂r
. (6.3)

The boundary condition (2.25) remain valid, but the velocity-decay condition (2.26)
is modified to the form

ψ/r → 0 as r → ∞. (6.4)

It seems plausible to proceed with the asymptotic expansion (3.1)–(3.4). Following
the same procedure as that applied to the sphere problem, we find (cf. (3.6) and (3.7))

ϕ(0) = −
(

r − 1

r

)
cos θ (6.5a)

and

q (0) = −4 cos θ

r
. (6.5b)

As in the three-dimensional problem, the leading-order flow is governed by (3.10) and
(3.11). With the Coulomb body forces in (3.11) decaying as 1/r , the singularity is
stronger compared with that appearing in the three-dimensional problem: the velocity
field v(1) actually diverges at large distances from the cylinder. The enhancement of
non-uniformities in two-dimensional configurations is familiar to other Stokes-flow
problems.

This singularity in the double limit (2.28) becomes explicit when attempting to
evaluate ψ (1). Substitution of (6.5) into (6.3) yields

∇4ψ (1) =
4

r2
sin 2θ. (6.6)

Clearly, ψ (1) is of the form

ψ (1)(r, θ) = f̃ (1)(r) sin 2θ. (6.7)

The function f̃ (1) satisfies the ordinary differential equation (cf. (3.15))

L̃ f̃ (0) =
4

r2
, (6.8)

where (cf. (3.16))

L̃ =
d4

dr4
+

2

r

d3

dr3
− 9

r2

d2

dr2
+

9

r3

d

dr
. (6.9)

This equation possesses the homogeneous solution

f̃
(1)
H = g̃4r

4 + g̃2r
2 + g̃0 +

g̃−2

r2
, (6.10a)

and the particular integral

f̃
(1)
P = −r2

4
ln r. (6.10b)

Note that the particular integral (6.10b) does not satisfy (6.4). Again, we encounter a
non-uniform solution.

As in the three-dimensional problem, the preceding solution represents the
electrokinetics in an inner region r = O(1). We here only consider the moderately
thick limit βλ� 1. The outer region is again defined by R = O(1), with R (now
a polar coordinate) again defined by the stretching (4.1). The governing equations
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(4.2)–(4.7) remain valid, as are the expansions (4.8) and (4.9) and the leading-order
equations (4.10)–(4.12). The two-dimensional solution of (4.12) that decays at large R

is

Q(0) =

∞∑
n=0

Kn(R)(Ãn cos nθ + B̃n sin nθ). (6.11)

The need to match the inner charge (6.5b) implies that Ã1 is the only coefficient that
does not vanish. Using the small-argument expansion of the modified Bessel function
(Abramowitz & Stegun 1965) and matching with (6.5b) yields Ã1 = −4 and (cf. (4.15))

δ =
β

λ
. (6.12)

The latter is indeed smaller then βλ, thus confirming the consistency of our asymptotic
scheme. The outer velocity field is therefore O(β2λ) (cf. (4.16))

V ∼ β2λV (1) + · · · . (6.13)

As in the inner region, we define a stream function

V = êz × ∇RΨ (6.14)

wherein

Ψ ∼ β2λΨ (1) + · · · . (6.15)

The leading-order momentum balance in the outer region is

∇4
RΨ (1) = 2K2(R) sin 2θ. (6.16)

Seeking a solution of the form Ψ (1) =F (1)(R) sin 2θ we find that F (1)(R) is governed by
the ordinary differential equation LRF (1) = 2K2(R), in which LR is provided by (6.9)
with r replaced by R. The homogeneous solution of this equation has the functional
form (6.10a); the far-field decay condition Ψ (1)/R → 0 implies however that both the
R4 and R2 powers must be rejected. Using the variation-of-parameters method we
then obtain

F (1)(R) = G̃0 +
G̃−2

R2
+ 2K2(R). (6.17)

Here, G0 and G−2 are constants of integration which are to be determined via
matching with the inner solution.

Definitions (6.1) and (6.14) in conjunction with (4.1) imply that the large-r expansion
of ψ must match the small-R expansion of λΨ . Using the small-argument expansion
of the modified Bessel functions (Abramowitz & Stegun 1965) we find for R � 1:

F (1)(R) ∼ G̃−2 + 4

R2
+ (G̃0 − 1) − R2

4
lnR +

ln 2 − γ + 3/4

4
R2 + O(R4 lnR), (6.18)

in which γ is Euler’s constant. In view of (3.17a), the comparable inner field f (1)

is at least O(r2 ln r) at large r , and could even behave as r4 if the coefficient g̃4 in
the homogeneous solution (6.10a) does not vanish. Thus, matching is possible only
if G̃−2 = −4 and G̃0 = 1; since F (1) then behaves like R2 lnR at small R, g̃4 must
consequently vanish.

Rewriting (6.18) in terms of the inner variable r yields

λ2F (1)(R) ∼ ln λ

4
r2 +

ln 2 − γ + 3/4

4
r2 − r2 ln r

4
+ · · · . (6.19)
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The last term in (6.19) neatly matches the problematic particular integral (3.17a); the
comparable leading-order term, however, does not match (6.10). It therefore becomes
evident that the inner asymptotic expansion (3.3) must be revised to

v ∼ β2 ln λ v(0) + β2v(1) + · · · (6.20)

with a comparable expansion for ψ . (It is easily verified that preceding analysis,
and, specifically, the negligence of ionic convection in the calculation of q (1), remains
valid.) Clearly, ψ (0) possesses the form f̃ (0)(r) sin 2θ , in which f̃ (0)(r) is a homogeneous
solution of L (cf. (6.10a))

f̃ (0) = h̃4r
4 + h̃2r

2 + h̃0 +
h̃−2

r2
. (6.21)

Matching with (6.19) is only possible if h̃4 vanishes. We then readily obtain

g̃2 =
ln 2 − γ + 3/4

4
, h̃2 =

1

4
. (6.22)

Since we considered two asymptotic orders that differ by a logarithmic factor, we
have effectively followed the 1–1 van Dyke matching rule (Van Dyke 1964). The
appearance of a leading asymptotic order in the inner region, which is triggered by
matching rather than by scaling arguments, is known as ‘switchback’ (Hinch 1991).

The remaining coefficients in (6.10a) and (6.21) are found using the boundary
condition (2.25). Applying it to ψ (1) yields g̃0 = 1/2 and g̃−2 = − 1/4, while applying
it to ψ (0) yields

h̃0 =
ln 2 − γ + 1/2

2
, h̃−2 = − ln 2 − γ + 1/4

4
, (6.23)

thereby completing the velocity calculation.

7. Concluding remarks
When considering electrokinetic flows about polarizable particles of realistic

dimensions, both the thin and thick Debye-layer limits are somewhat idealized.
Nevertheless, their understanding is useful in obtaining a qualitative picture of the
transport processes occurring at intermediate values of the Debye thickness. The
thin-layer limit is reasonably understood; in this paper we present a first analysis
of the thick-layer limit. In an attempt to understand the electrokinetic processes in
that limit, we have naturally focused upon the simplest induced-charge configuration:
the steady-state electrokinetic flow about an ideally polarizable (perfectly conducting)
spherical particle of zero net charge, which is exposed to a constant and uniform
electric field.

We analysed the flow in the double limit of weak field and thick Debye layer.
The evaluation of the Debye-layer structure appears to require a regular-perturbation
scheme, in the spirit of Yariv & Miloh (2008). However, the failure to calculate
the attendant velocity field indicates that the problem is inherently singular. We
therefore resort to inner–outer asymptotic expansions, wherein the outer length scale
depends upon the magnitude of the dimensionless group βλ. Two asymptotic limits
are identified: the moderately thick limit βλ� 1, wherein the outer region is on the
λ-scale, and the super-thick limit βλ � 1, where it is on the scale 1/β . A full calculation
of the inner flow field, at the particle scale, requires a preliminary analysis of the
appropriate outer region followed by asymptotic matching. This goal is achieved in the
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moderately thick limit, thereby yielding a complete calculation of the electrokinetic
fields in both regions. The comparable analysis of the super-thick limit is frustrated
by the inability to obtain an analytic solution for the outer momentum balance (5.17).
We have also analysed the moderately thick limit for the two-dimensional geometry
of an infinite cylinder. Here the non-uniformity of the inner solution is stronger;
consequently, asymptotic matching results in a switchback effect which modifies the
leading-order scaling of the inner flow. The different far-field behaviour in the two
sub-limits is of obvious importance to subsequent analyses of wall effects (Gangwal
et al. 2008; Saintillan in preparation; Yariv to appear).

The present analysis can be extended in several directions. Some of them, like the
generalization to dielectric particles or AC fields, are rather technical. A challenging
extension which is of clear practical interest involves relaxing the assumption of a
weakly applied field, and perhaps even considering the extreme limit of strongly
applied field. Initial electrokinetic analysis in the strong-field régime, wherein the flow
field is assumed absent, has already appeared in the literature (Chu & Bazant 2006).

Another extension involves the analysis of charged particles. The present
assumption of zero initial particle charge, in conjunction with the integral charge
conservation argument (2.16), implies that the (uniform) particle electric potential is
that of its undisturbed background. When the particle carries net charge, integral
conservation arguments may introduce nonlinear potential shift (Dukhin, Vincent &
Mozes 1993; Yariv 2008a). The vanishing of the particle potential in the present
context guarantees several symmetries of the pertinent physical fields. The symmetry
of the electric and velocity fields actually ensures that the particle does not experience
any electrical or hydrodynamic force. This symmetry was implicitly employed in the
analysis, where it was tacitly assumed that the particle remained stationary (see (2.14)).

The situation is of course quite different in the simplest configuration of charged
non-polarizable particle, where the determination of the particle electrophoretic
velocity is the natural goal. The electrophoretic velocity of a non-polarizable spherical
particle in the thick-layer limit was originally calculated by Hückel (1924). It is
obtained from a simple balance between the Coulomb force on a charged particle
and a Stokes drag (Saville 1977). The determination of this velocity to O(β) does not
require any detailed calculations of the velocity fields. It is only when higher-order
correction to this velocity are sought that singular perturbation theory becomes
necessary. Such an investigation appears to constitute a formidable task: thus
far, systematic singular-perturbation analyses of fixed-charge electrokinetics in the
thick-Debye-layer limit have been performed only for an equilibrium Debye cloud
(Natarajan & Schechter 1986), in the absence of an applied field.
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Böhmer, M. 1996 In situ observation of 2-dimensional clustering during electrophoretic deposition.
Langmuir 12, 5747–5750.

Brown, A. B. D., Smith, C. G. & Rennie, A. R. 2000 Pumping of water with ac electric fields
applied to asymmetric pairs of microelectrodes. Phys. Rev. E 63 (1), 016305.

Chu, K. T. & Bazant, M. Z. 2006 Nonlinear electrochemical relaxation around conductors. Phys.
Rev. E 74, 11501.

Dukhin, A. S. 1986 Pair interaction of disperse particles in electric-field. 3. Hydrodynamic interaction
of ideally polarizable metal particles and dead biological cells. Colloid J. USSR 48, 376–381.

Dukhin, S. S. 1991 Electrokinetic phenomena of the 2nd kind and their applications. Adv. Colloid
Interface 35, 173–196.

Dukhin, A. S., Vincent, B. & Mozes, N. 1993 Biospecific mechanism of double layer formation
and peculiarities of cell electrophoresis. Colloid Surface A 73, 29–48.

Eijkel, J. & Berg, A. 2005 Nanofluidics: what is it and what can we expect from it? Microfluid.
Nanofluid. 1, 249–267.

Gamayunov, N. I., Murtsovkin, V. A. & Dukhin, A. S. 1986 Pair interaction of particles in
electric-field. 1. Features of hydrodynamic interaction of polarized particles. Colloid J. USSR
48 (2), 197–203.

Gangwal, S., Cayre, O., Bazant, M. & Velev, O. 2008 Induced-charge electrophoresis of
metallodielectric particles. Phys. Rev. Lett. 100, 58302.
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